How to use MENAP? http://ieg4.rccc.ou.edu/mena/ Version 20251202

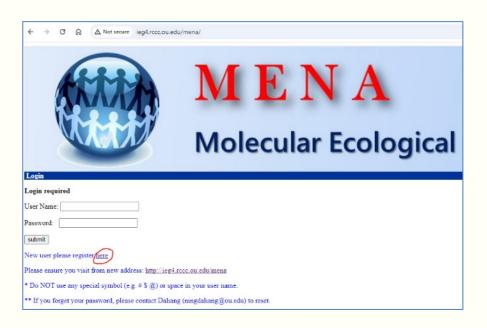
Institute for Environmental Genomics (IEG)
University of Oklahoma, Norman, OK, USA

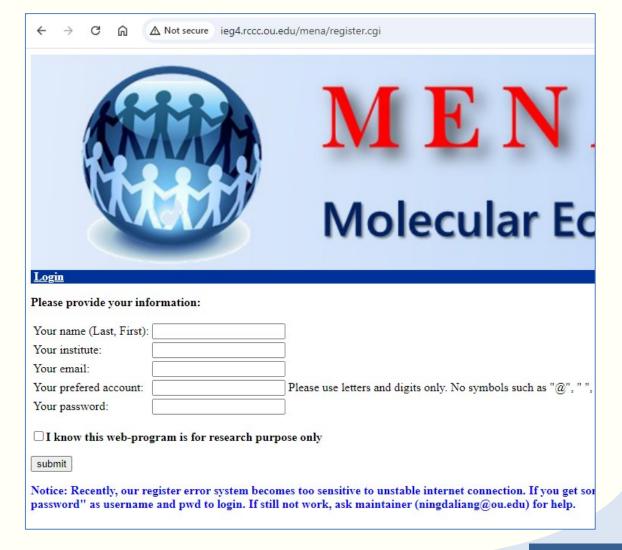
Daliang Ning (ningdaliang@ou.edu)

Outline

- Requirements | Registration | Log in
- Upload your dataset | Construct the network | Download matrixes
- Analyze the networks
 - Global Network Properties | Individual Nodes Centrality
 - Module Separation and Modularity
 - Simple Network Plot | Output for the Cytoscape
 - Use Cytoscape to Visualize Network
 - o Prepare files | Import files | Select style | Layout | Manual adjustment
 - o Node color | Node size | Node label | Edge color | Edge size
 - o <u>Edge transparency</u> | <u>Edge label</u> | <u>Export image</u> | <u>Save session</u>
 - Fit Power-Law Models | Randomize the network
 - Relationship with Environmental traits | Module-EigenGene Analysis

Data requirements


- Sample number: better ≥ 8
 - Remember fewer samples lead to less reliable correlation coefficients.
- Taxa number: qualified taxa > 50 and < 2000
 - 'Qualified taxa' mean taxa detected in more than a certain number of samples
 - MENAP default setting is 50% of samples (see 'majority' in 'construct network' step)
 - If too few, not recommend to use MENAP.
 - If too many, consider denoising the data or ask the maintainer for help.


Current maintainers: Daliang Ning (ningdaliang@ou.edu)

Yajiao Wang (Yajiao.Wang-1@ou.edu)

Registration

http://ieg4.rccc.ou.edu/mena/register.cgi

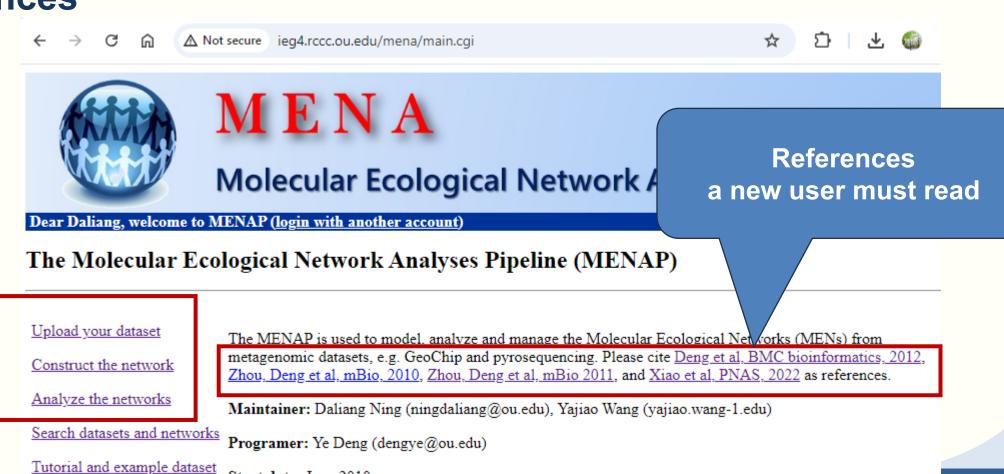
Registration

- http://ieg4.rccc.ou.edu/mena/register.cgi
- 'Your preferred account' will be your 'User Name'
 - Please use letters and digits only. No symbols such as "@", " ", etc. Please do not use your email address.
 - To ensure no conflict with other users, you may need to use a relatively complex account name. Adding time code like 202410061815 can be a good option.
 - Example username: MUS202410061815a
- Unexpected Error message
 - If you get some warning like "this email or username has been used" but you are sure it has not, just go ahead to use what you input to "Your prefered account" and "Your password" as username and password to login http://ieg4.rccc.ou.edu/mena/
- For any problem, you can always ask the maintainer for help.

Back to Outline

Log in main page

http://ieg4.rccc.ou.edu/mena


The

Three

Steps

 Once log in, you can see the Three Steps and Recommended References

Start date: June 2010

Upload your dataset (1)

The Molecular Ecological Network Analy

Upload your dataset

Construct the network

Analyze the networks

Search datasets and networks

Tutorial and example dataset

The MENAP is used to model, an metagenomic datasets, e.g. GeoC Zhou, Deng et al, mBio, 2010, Zh

Maintainer: Daliang Ning (ning

Programer: Ye Deng (dengye@c

Start date: June 2010

<u>Main</u>

Upload your dataset

<u>Upload your dataset</u>

Construct the network

Your data file:

Choose File No file chosen

Analyze the networks

cells are allowed).

ID Sample1 Sample2 ... SampleN

 Search datasets and networks
 ID
 Sample1 data11
 Sample2 data12

 Tutorial and example dataset
 12345 data11
 data12

 54321 data31
 data31
 data32

Please give a descriptive name to your dataset (need to be complex enough and better include date and initials of your username, e.g. USERA20220414DataA1. Use only letters or letters plus numbers. Do not include any symbols, e.g. #*,1,;")

The uploaded file must be tab-devided text file and its format should be as same as below (blank data

data1N

data2N

data3N

Attention:

- (1) The upload file size could not exceed 30Mb.
- (2) Currently we can not support **Mac** generated text file. Please switch to Windows or Linux system to generate your text file.
- (3) DO NOT use pure number (e.g. 10) as dataset name.
- (4) Do Not use any blank space or symbols or begin with number in your sample name, taxa name (e.g. OTU
- ID), or dataset name. Better only letters or letters plus numbers.
- (5) Leave all "zero" (undetectable) cells as blank (empty) cells. Do NOT include any space in the empty cells. Please remove ghost taxa (e.g. OTUs) which are not detected in any sample, unless you have strong rationale to keep them.
- (6) Make the minimum observed value close to but no less than 1. Negative value is not allowed. Do some transformation which would not change correlation coefficient, e.g. multiply the whole matrix by a constant.

Submit

Reason and Solution for "500 error":

- (1) Address: ensure you are using http://ieg4.rccc.ou.edu/mena/ instead of the old address http://ieg4.rccc.ou.edu/mena/ instead of the old address http://ieg4.rccc.ou.edu/mena/ instead of the old add
- (2) Browser: test an example dataset from <u>Tutorial and example dataset</u>. If it does not work, it is usually browser compatibility issue. Please try 360 browser, if Firefox, Chrome, or IE does not work. Some users solved the problem by changing to another computer. We feel sorry that Mac can be incompatible now.

 (3) Format: if the example dataset works but yours failed, it is usually format issue. Please carefully read the
- "Attention" above and check your file.

If it still doesn't work, please feel free to contact the maintainers (naijia.xiao@ou.edu). Please include your username, email, and experiment name in your email; if you have constructed multiple networks with the same name, please include your network construction time as well.

Upload your dataset (2)

- OTU or ASV table or Gene (normalized) abundance table
- Tab delimited txt file
- 'Please give a descriptive name to your dataset' the name needs to be complex enough to ensure uniqueness
 - e.g., UserA20241006DataC
- Do Not use any blank space or symbols or begin with number in your sample name, taxa name (e.g. OTU ID), or dataset name. Better only letters or letters plus numbers.
 - Good ID examples: OTU1246 SampA453
 - Bad ID examples: 1246 OTU_1246 453A 453_A Samp A 453
- Leave all "zero" (undetectable) cells as blank (empty) cells. Do NOT include any space in the empty cells.
- Please remove ghost taxa (e.g. OTUs) which are not detected in any sample, unless you have strong rationale to keep them.
- Make the minimum observed value close to but no less than 1. Negative value is not allowed.
 - If your data have value <1 or negative values, do some linear transformation which would not change correlation coefficient, e.g., multiply by a constant to bring all observed numbers ≥1</p>

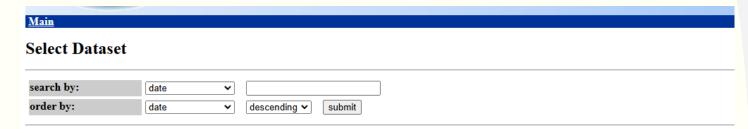
Construct the network (1)

The Molecular Ecological Network

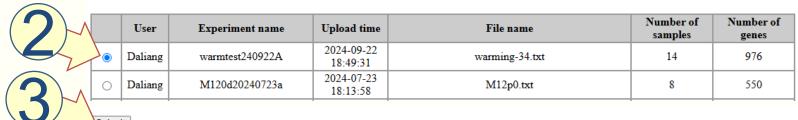
Upload your dataset

Construct the network

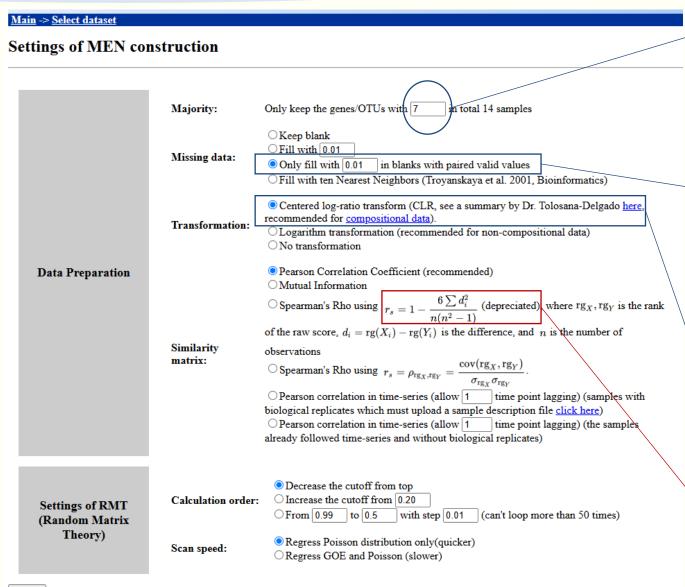
Analyze the networks


Search datasets and networks

Tutorial and example dataset


The MENAl pyrosequence 2022 as reference 2022 as reference 2022.

Programer:


Start date:

Please select a dataset to construct Molecular Ecological Network (MEN)

Construct the network (2)

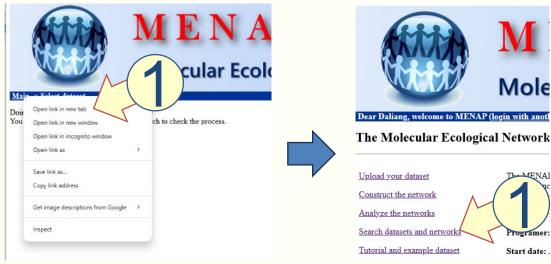
You can change this number. Recommend to use 50% - 80% of the total sample number, or a number you can well justify.

Recommend to use this option. You may change the 'fill-with' number, but it must be lower than the minimum observed number, but not so low that it can lead to false correlation. Default is 0.01, assuming the minimum observed number is 1.

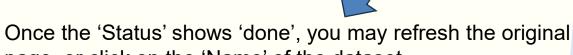
This is recommended, to mitigate the 'compositional data' effect on correlation estimation. If your data is not compositional, e.g., absolute abundance data, try other options.

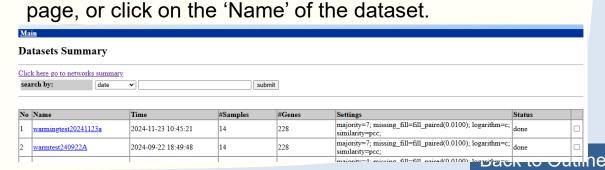
DO NOT use this Spearman option. Use the next one if you want to use Spearman.

Mole


Construct the network (3)

When the page does not show 'You can refresh this page ...', DO NOT close or refresh the page, but wait.




Main -> Select dataset

Doing RMT-based modeling You can refresh this page or go to Main->search to check the process. When waiting, you can right-click 'Main' → 'open link in new Tab', then in a new Tab, click 'Search datasets and networks' to check progress

Construct the network (4)

Main -> Select dataset

RMT-based modeling has been done on "warmingtest20241123a" dataset.

Please choose a cutoff according to the results below for similarity matrix to construct the network.

Cutoff	Chi-square test on Poisson distribution	p value
0.890	167.978	0.000
0.880	70.216	0.172
0.870	53.215	0.720
0.860	72.251	0.133
0.850	65.037	0.306
0.840	67.063	0.248
0.830	66.426	0.265
0.820	109.416	0.000
0.810	69.285	0.193
0.800	63.660	0.349
0.790	63.187	0.364
0.780	74.178	0.103
0.770	81.031	0.037
0.760	86.087	0.015
0.750	95.784	0.002
0.740	124.967	0.000

0.030	123.438	0.000	p>0.001
0.020	127.558	0.000	p>0.01
0.010	118.413	0.000	p>0.05

GBD-based RMT cutoffs for "warmingtest20241123a Pearson Correlation.txt": upper=0.8,best=0.77,lower=0.75

☑ Use iDIRECT to remove indirect relationships? Hover for more

The cutoff: 0.780 (default) Construct the network

Raw similarity matrix: download (Only the upper-right triangle of the full matrix. It contains no OTU ID.)

Condensed OTU table: download (OTU ID in the same order as the correlation matrix)

Custom similarity matrix: upload

'RMT cutoffs based on GBD function' is more recommended now. Theoretically, any number between the 'upper' and 'lower' values can be used as a good cutoff.

- If you only construct one network for your project, please use the 'best' value;
- If you will compare several different networks, you better get this range ('upper' to 'lower') for each network first, then use a cutoff value which can fall into this range for every network. Then, by using the same cutoff value, those networks can be more comparable.

'iDIRECT' is recommended to remove the 'indirect' associations, to make the result network only include 'direct' associations.

 If you selected 'iDIRECT' once but want to try not to use 'iDIRECT', you need to upload your file again with another name.

Construct the network (5)

Main -> Select dataset

RMT-based modeling has been done on "warmingtest20241123a" dataset.

Please choose a cutoff according to the results below for similarity matrix to construct the network.

Cutoff	Chi-square test on Poisson distribution	p value
0.890	167.978	0.000
0.880	70.216	0.172
0.870	53.215	0.720
0.860	72.251	0.133
0.850	65.037	0.306
0.840	67.063	0.248
0.830	66.426	0.265
0.820	109.416	0.000
0.810	69.285	0.193
0.800	63.660	0.349
0.790	63.187	0.364
0.780	74.178	0.103
0.770	81.031	0.037
0.760	86.087	0.015
0.750	95.784	0.002
0.740	124.967	0.000

0.030	123.438	0.000		p>0.001
0.020	127.558	0.000	1	p>0.01
0.010	118.413	0.000	1	p>0.05

GBD-based RMT cutoffs for "warmingtest20241123a Pearson Correlation.txt": upper=0.8,best=0.77,lower=0.75

☑ Use iDIRECT to remove indirect relationships? Hover for more

The cutoff: 0.780 (default) Construct the network

Raw similarity matrix: download (Only the upper-right triangle of the full matrix. It contains no OTU ID.)

Condensed OTU table: download (OTU ID in the same order as the correlation matrix)

Custom similarity matrix: upload

This is from our old algorithm, NOT recommended any more, which did not work for a few datasets.

Here, the default value is from our old algorithm, NOT recommended any more. Please consider using the GBD-based RMT cutoffs as described on previous page.

Construct the network (6)

Main -> Select dataset

RMT-based modeling has been done on "warmingtest20241123a" dataset.

Please choose a cutoff according to the results below for similarity matrix to construct the network.

Cutoff	Chi-square test on Poisson distribution	p value
0.890	167.978	0.000
0.880	70.216	0.172
0.870	53.215	0.720
0.860	72.251	0.133
0.850	65.037	0.306
0.840	67.063	0.248
0.830	66.426	0.265
0.820	109.416	0.000
0.810	69.285	0.193
0.800	63.660	0.349
0.790	63.187	0.364
0.780	74.178	0.103
0.770	81.031	0.037
0.760	86.087	0.015
0.750	95.784	0.002
0.740	124.967	0.000
		\neg

0.030	123.438	0.000	p>0.001
0.020	127.558	0.000	p>0.01
0.010	118.413	0.000	p>0.05

GBD-based RMT cutoffs for "warmingtest20241123a Pearson Correlation.txt": upper=0.8,best=0.77,lower=0.75

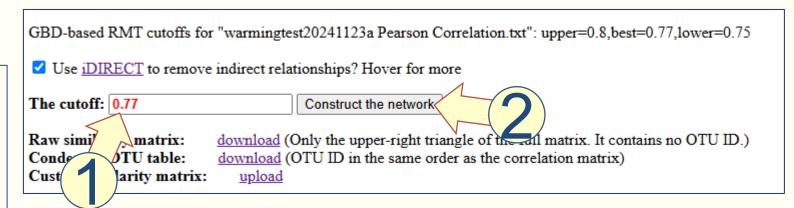
☑ Use <u>iDIRECT</u> to remove indirect relationships? Hover for more

The cutoff: 0.780 (default) Construct the network

Raw similarity matrix: download (Only the upper-right triangle of the full matrix. It contains no OTU ID.) download (OTU ID in the same order as the correlation matrix)

Custom similarity matrix: upload

Raw similarity matrix: the upper-right triangle of the 'association matrix' before applying any cutoff, where the taxa IDs are not included but in the exact order as the taxa IDs in the 'condensed OTU table'.


Condensed OTU table: the community composition matrix, each row is a taxon, each column is a sample, after applying the 'majority' filter and data transformation.

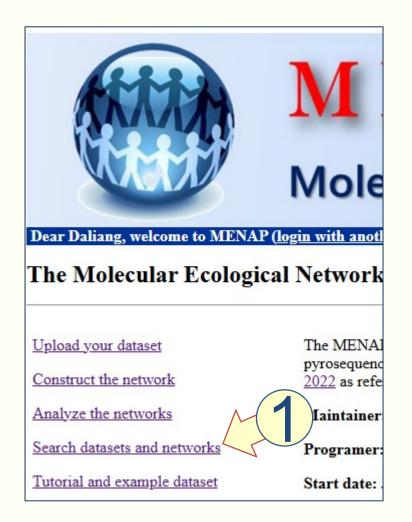
This is where you may upload a similarity matrix (association matrix) which results from your own algorithm that is not available in MENAP.

Remember to follow the format requirement.

Construct the network (7)

Revise the cutoff according to GBD-based RMT cutoffs. See notes in the previous slide.

Main


The number of nodes: 120 The number of links: 163 The average path: 4.558

R square of power-law: 0.924

A rough summary will show, it is good to go to the Main page and start next step.

Download matrixes (1)

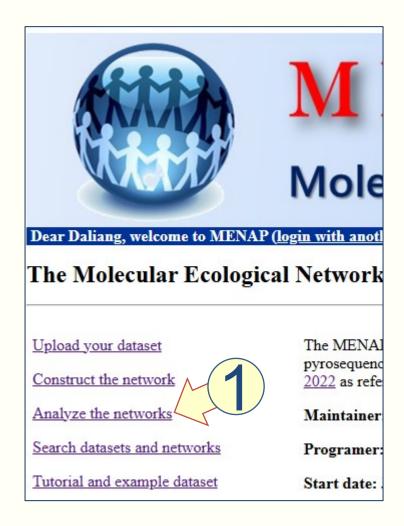
- Download correlation/similarity matrix and condensed OTU table
 - First, 'Search datasets and networks' -> select the dataset

Main								
Datasets Summary								
Click here go to networks summary								
search by:	sul	bmit						
No Name	#Samples	#Genes	Settings	Status				
1 warmingtest20241123a 0:45:21	14	228	majority=7; missing_fill=fill_paired(0.0100); logarithm=c; similarity=pcc;					
2 <u>warmtest240922A</u> 2024-09-22 18:49:48	14	228	majority=7; missing_fill=fill_paired(0.0100); logarithm=c; similarity=pcc;	done				
			majority-1: missing fill-fill paired(0.0100): logarithm-s:	i				

Download matrixes (2)

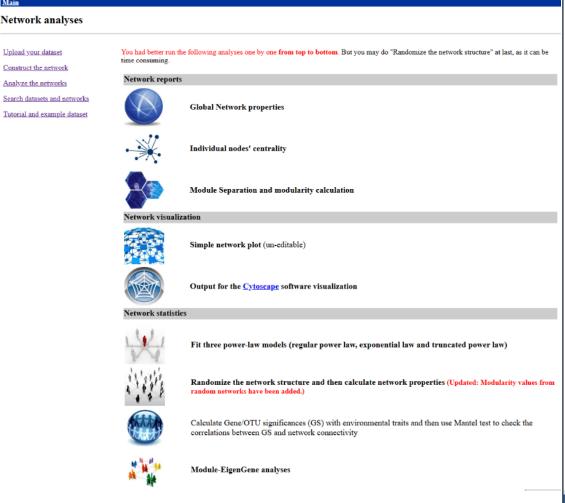
Download the similarity matrix and condensed OTU table

- 'Condensed OTU table'
 - the OTU/ASV/gene table after applying 'majority' rule, i.e., without taxa detected in too few samples.


'Raw similarity matrix'

- the pairwise correlation coefficients, but those with absolute values lower than the default cutoff are set to zero. If you need all the values, contact the administrator and provide your user name and the dataset name.
- The file has only upper-right triangle values of the full matrix and no ID (but the rows are in the same order as the condensed OTU table)
 - An example R code to transform the data file to a full matrix http://ieg4.rccc.ou.edu/MENA/download/MENA.similarity.matrix.convert.r.txt

GBD-based RMT cutoffs for "warmingtest20241123a Pearson Correlation.txt": upper=0.8,best=0.77,lower=0.75					
Use iDIRECT to remove indirect relationships? Hover for more					
ne cutoff: 0.77 Construct the network					
w similarity matrix: download (Only the upper-right triangle of the full matrix. It contains no OTU ID.) download (OTU ID in the same order as the correlation matrix)					
istom similarity matrix: upload					


Right-click 'download' and 'Save link as ...' to download the tables.

Analyze the networks

Please run the tools one by one from top to bottom, except the 'randomize the network ...' which is time consuming and can be run at the last.

Global Network Properties

Network reports

Global Network properties

Individual nodes' centrality

Module Separation and modularity calculation

Main -> Analysi

Select Network to do global property

search by:	date	~		
order by:	date	~	descending ∨ submit	

ease select a Molecular Ecological Network (MEN)

	User	Experiment name	Construction time	RMT threshold	# nodes	# links
2	Daliang	warmingtest20241123a	2024-11-23 11:29:18	0.7700	120	163
	Daliang	M120d20240723a	2024-07-23 18:26:40	0.9000	136	110

If the dataset is very big, you may need to wait for some hours.

Main -> Analysis

Network global properties

This is your first time to run parameter calculations on warmingtest20241123a at 0.77 threshold. It will take a few minutes...

Network Indexes	warmingtest20241123a(0.77)
Total nodes	120
Total links	163
R square of power-law	0.924
Average degree (avgK)	2.717
Average clustering coefficient (avgCC)	0.001
Average path distance (GD)	4.558
Geodesic efficiency (E)	0.278
Harmonic geodesic distance (HD)	3.602
Maximal degree	19
Nodes with max degree	OTU1094
Centralization of degree (CD)	0.139
Maximal betweenness	1485.297
Nodes with max betweenness	OTU1094
Centralization of betweenness (CB)	0.193
Maximal stress centrality	11108
Nodes with max stress centrality	OTU1094
Centralization of stress centrality (CS)	1.434
Maximal eigenvector centrality	0.413
Nodes with max eigenvector centrality	OTU1094
Centralization of eigenvector centrality (CE)	0.369
Density (D)	0.023
Reciprocity	1
Transitivity (Trans)	0.004
Connectedness (Con)	0.655
Efficiency	0.977
Hierarchy	0
Lubness	1

Copy paste the table to a spreadsheet

Individual Nodes Centrality (node attributes)

Network reports

Global Network properties

Individual nodes' centrality

Module Separation and modularity calculation

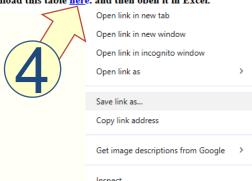
Main -> Analysis

Select Network to do individual_property

search by:	date	~		
order by:	date	~	descending 🕶	submit

ease select a Molecular Ecological Network (MEN)

	1						
		User	Experiment name	Construction time	RMT threshold	# nodes	# links
		Daliang	warmingtest20241123a	2024-11-23 11:29:18	0.7700	120	163
C		Daliang	M120d20240723a	2024-07-23 18:26:40	0.9000	136	110
		4					


Submit 3

Main -> Analysis

Network nodes' centrality indexes

Node Name	node.degree	node.betw	node.stress	node.evcent	Clustering.Coefficient
OTU1	10	641.712	6278	0.266	0
OTU1006	8	373.113	4306	0.204	0
OTU1033	1	0	0	0	0
OTU1035	1	0	0	0.023	0
OTU1060	3	33.451	214	0.028	0
OTU1068	2	2	2	0	0
OTU107	1	0	0	0.005	0
OTU1076	2	59.287	668	0.051	0
OTU1088	5	376.834	2956	0.002	0
OTU1094	19	1485.297	11108	0.412	0.005
	2			0.070	^
OTU783	1	0	0	0.000	0
OTU896	4	23.081	258	0.096	0
OTU898	2	0.84	7	0.070	0
OTU96	1	0	0	1.324e-05	0

You can download this table here, and then open it in Excel.

Right-click 'here' and 'Save link as ...' to download the table.

Module Separation and Modularity

Network reports

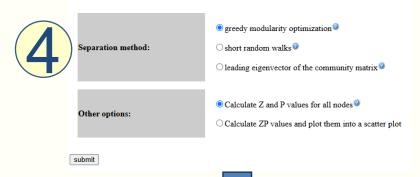
Global Network properties

Individual nodes' centrality

Module Separation and modularity calculation

Main -> Analysis

Select Network to do modularity


search by:	date	~		
order by:	date	~	descending ~	submit

ease select a Molecular Ecological Network (MEN)

	User Experiment name		Construction time	RMT threshold	# nodes	# links	
	Daliang	warmingtest20241123a	2024-11-23 11:29:18	0.7700	120	163	
0	Daliang	M120d20240723a	2024-07-23 18:26:40	0.9000	136	110	
	' /						

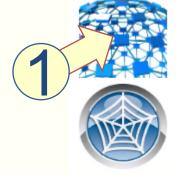
Submit 3

Main -> Analysis Settings of module separation Summary of your data: Experiment name | warmingtest20241123a | Threshold | 0.77 | # nodes | 120

163

Main -> Analysis

Network module separation and modularity calculation


This is your first time to run parameter calculations on warmingtest20241123a at 0.77 threshold. It will take a few minutes.

#module: 14				
modularity: 0.615				
No	ID	No. module	Zi	Pi
1	OTU1	2	1.224	0.54
2	OTU1006	3	0.079	0.718
	1			
12	7	1	-0.69	1 0
You can downloa	d th	nere, and th	ien op	en it in

Right-click 'here' and 'Save link as ...' to download the table.

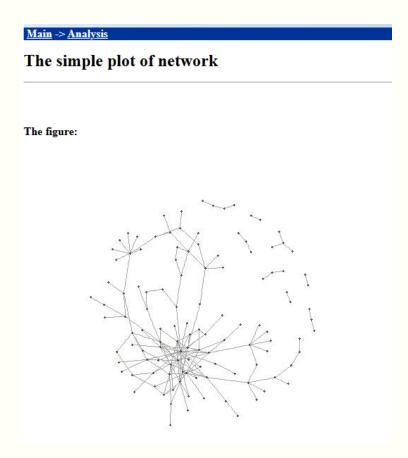
Simple network plot (un-editable)

Network visualization

Simple network plot (un-editable)

Output for the Cytoscape software visualization

Main -> Analysis


Select Network to do Simple plot

search by:	date	~		
order by:	date	~	descending ~	submit

ease select a Molecular Ecological Network (MEN)

	User	Experiment name	Construction time	RMT threshold	# nodes	# links
-	Daliang	warmingtest20241123a	2024-11-23 11:29:18	0.7700	120	163
C	Daliang	M120d20240723a	2024-07-23 18:26:40	0.9000	136	110

This is a quick overview of the network.

Output for the Cytoscape software visualization

Network visualization

Simple network plot (un-editable)

Output for the Cytoscape software visualization

Main -> Analysis

Select Network to do Cytoscape preparation

search by:	date	~		
order by:	date	~	descending 🗸	submit

ease select a Molecular Ecological Network (MEN)

	User	Experiment name	Construction time	RMT threshold	# nodes	# links	
-	Daliang	warmingtest20241123a	2024-11-23 11:29:18	0.7700	120	163	
C	Daliang	M120d20240723a	2024-07-23 18:26:40	0.9000	136	110	

Main -> Analysis

bu have already ran these module-separation methods. Please choose one:

greedy modularity optimization

Main -> Analysis

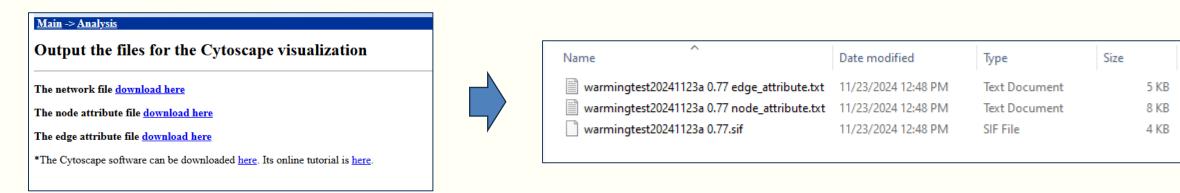
Output the files for the Cytoscape visualization

The network file download here

The node attribute file download here

The edge attribute file download here

*The Cytoscape software can be downloaded here. Its online tutorial is here.

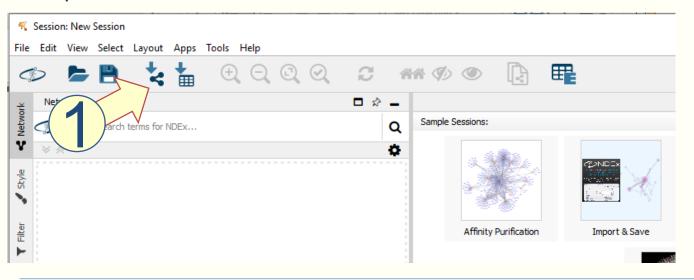

Right-click each file link and 'Save link as ...' to download the table.

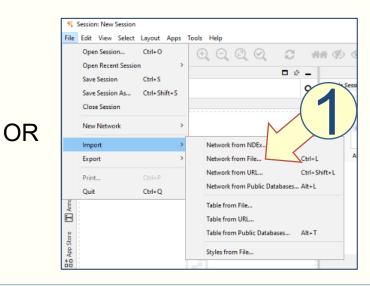
Use Cytoscape to visualize your network

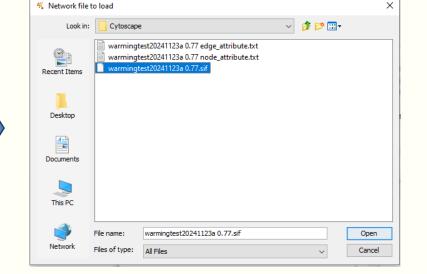
- Download and install Cytoscape
 - https://cytoscape.org/
- Check the online tutorial from Cytoscape
 - https://github.com/cytoscape/cytoscape-tutorials/wiki
- Below is a simple example
 - Using Cytoscape 3.10.3

Use Cytoscape: prepare your files

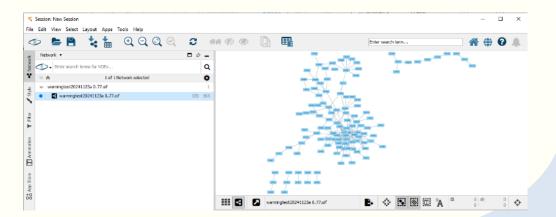
Download files from MENAP function 'Output for the Cytoscape software visualization'

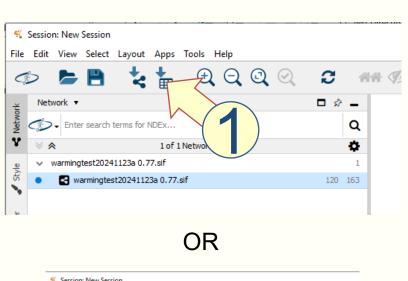



- Use Excel to edit the '...node_attribute.txt' or '...edge_attribute.txt' if you want to add more attributes to show in the network figure.
 - For example, add the phylum information


	Α	В	С	D	E	F	G	Н	I	J	K
1	Name	node.degr	node.betw	node.stres	node.evce	Clustering	No. modu	Zi	Pi	Phylum	
2	OTU1	10	641.7128	6278	0.266659	0	2	1.224745	0.54	Firmicutes	
3	OTU1006	8	373.1139	4306	0.204756	0	3	0.079057	0.71875	Bacteroidetes	
4	OTU1033	1	0	0	0	0	12	0	0	Actinobacteria	
5	OTU1035	1	0	0	0.023869	0	0	-0.87706	0	Proteobacteria	
6	OTU1060	3	33.45186	214	0.028578	0	0	0	0.444444	Verrucomicrobia	
7	OTU1068	2	2	2	0	0	6	1	0	Fusobacteria	
8	OTU107	1	0	0	0.005383	0	1	-0.69109	0	Cyanobacteria	
9	OTU1076	2	59.28701	668	0.051311	0	1	-0.69109	0.5	Firmicutes	
10	OTU1088	5	376.8348	2956	0.002985	0	4	2.183063	0	Firmicutes	
11	OTU1094	19	1485.297	11108	0.412795	0.005848	2	3.265986	0.592798	Firmicutes	

Use Cytoscape: import data files (1)


• Import the network file '...sif'

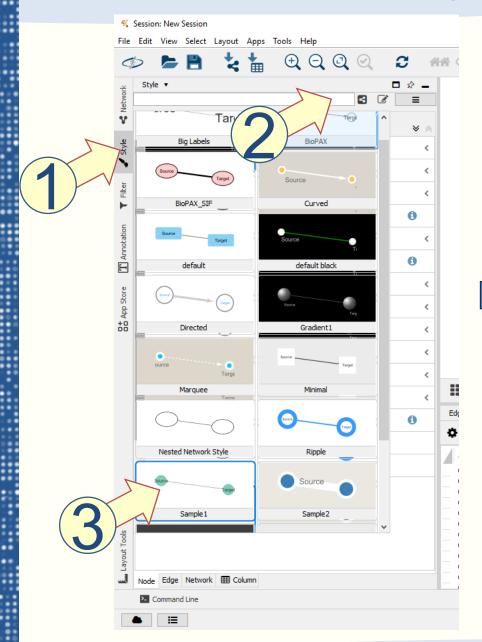


Use Cytoscape: import data files (2)

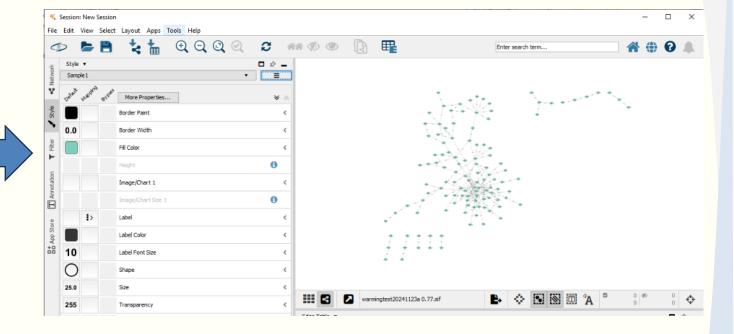
Import the '...node_attribute.txt' file

Use Cytoscape: import data files (3)

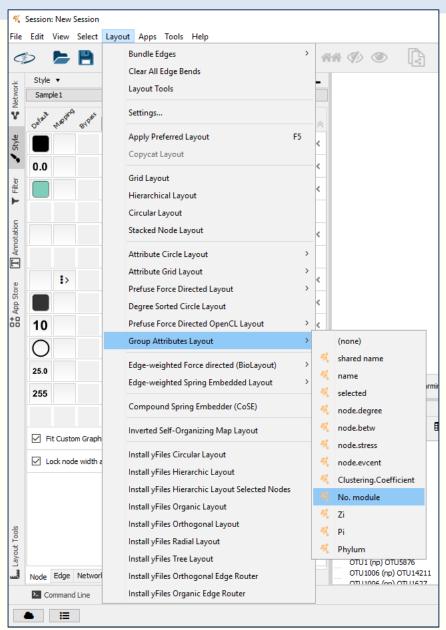
Import the '...edge_attribute.txt' file v 👌 📂 🖽 • Recent Items New Session: New Session Desktop Documents Import - Advanced Options File Import Options warmingtest20241123a 0.77.sif warmingtest20241123a 0.77 edge_attribute.txt Open warmingtest20241123a 0.77.sif Delimiter: ______, (comma) (semicolon) SPACE N Import Columns From Table To selected networks only Others: = OR -Select Networks Decimal separator:

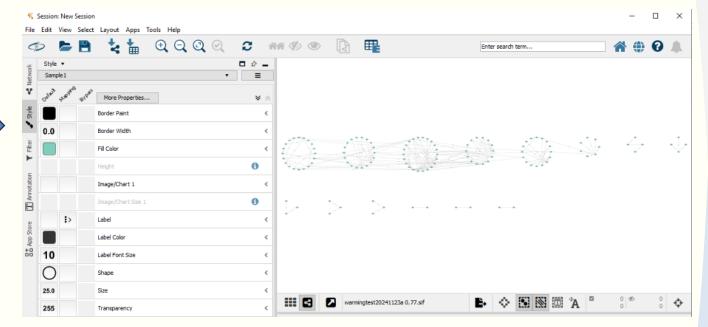

. (dot) O , (comma) **Edge Table Columns** Other: Use first line as column names Key Column for Networks: shared name Case Sensitive Key Values: < Start Import Row: Unselect Ignore Lines Starting With: 'use first Select None Network from Pu line as column Table from Public Databases... names' **3** OTU1 (np) OTU51 = -1.000

Click 'Advanced Options'

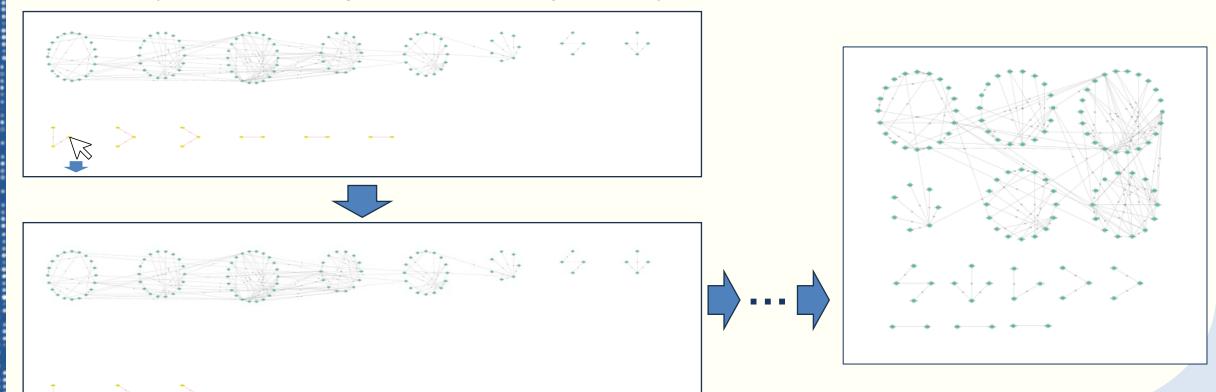

OTU1 (np) OTU5876 = -1.000

Advanced Options...

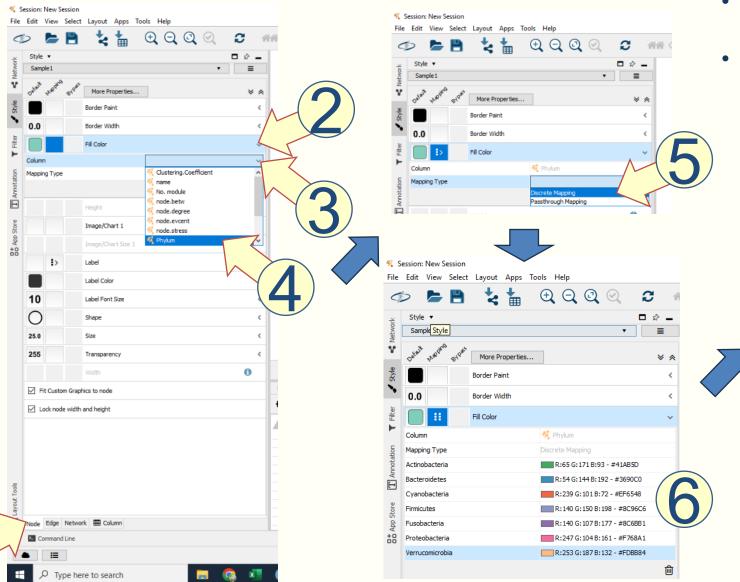

Use Cytoscape: select style


• Select 'Style' → 'Sample 1'

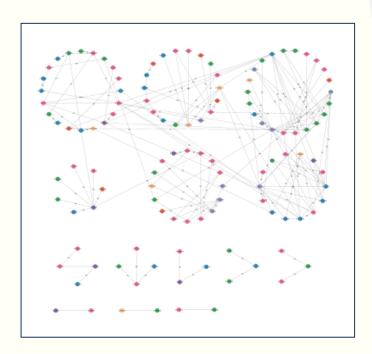
Use Cytoscape: layout



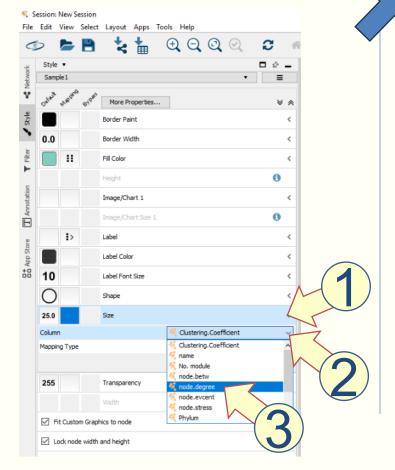
- You may explore different layout options
- Here the example shows 'group by module'

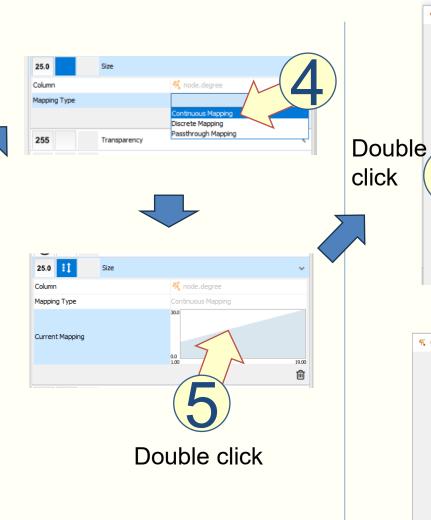


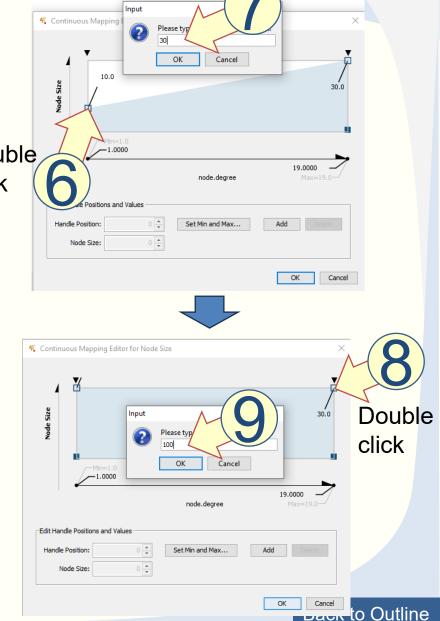
Use Cytoscape: manual adjustment of layout


- To select nodes and edges, hold 'Ctrl' and use mouse drag (hold down left mouse button and drag) to select.
 Selected nodes will become yellow, and selected edges will become red.
- Move mouse above one of the nodes you want to move, then hold down left mouse and move.
- Click any other position will deselect the nodes and edges.
- Repeatedly select nodes/edges and move to adjust the layout.

Use Cytoscape: Node color

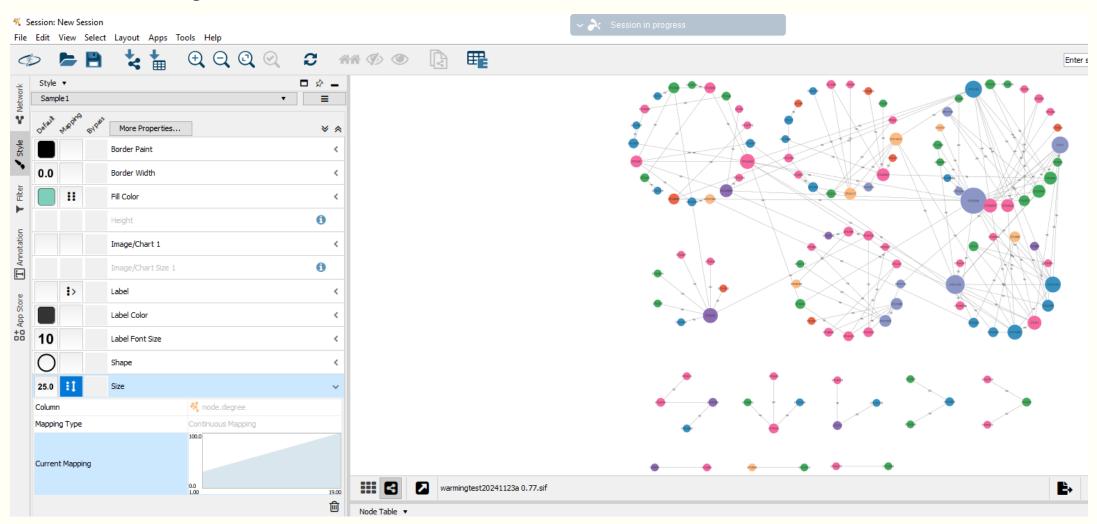

- You may explore node color by other different attributes.
- Here the example shows node color by phylum information.

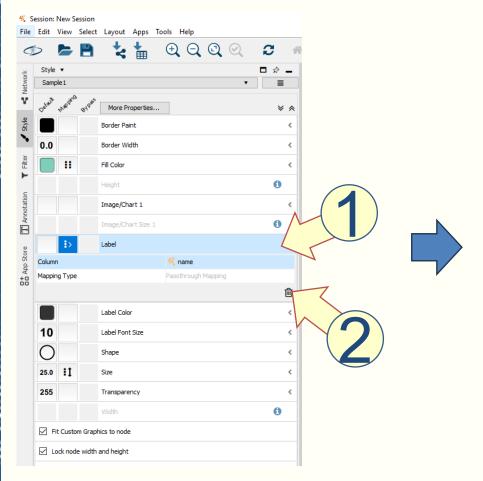


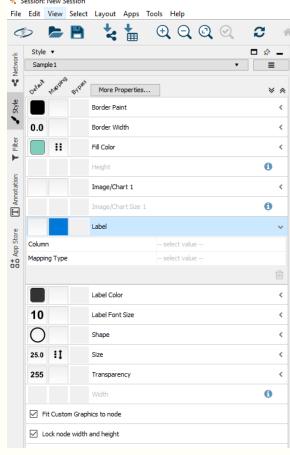

Use Cytoscape: Node size

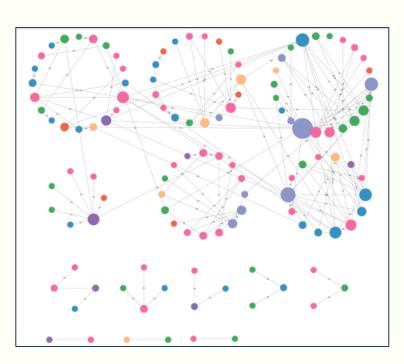
You may explore node size by other attributes.

 Here the example shows node size by node degree.



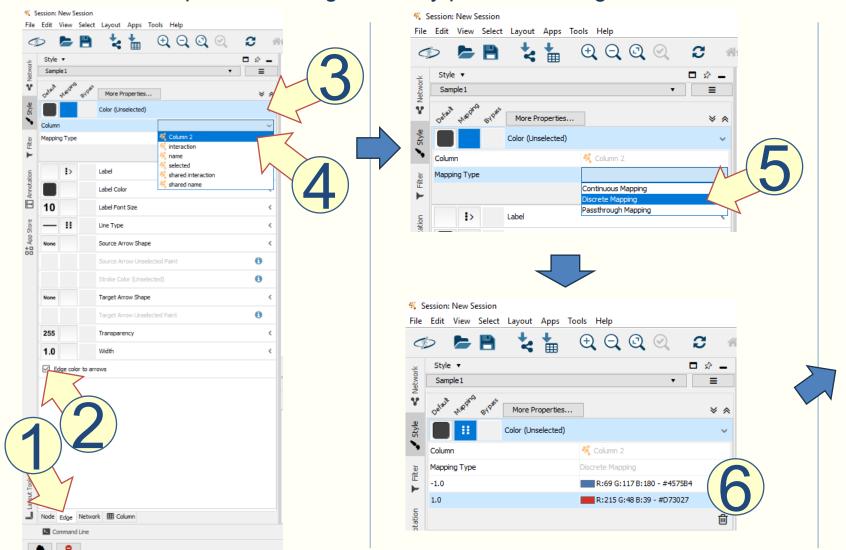

Use Cytoscape: Node size

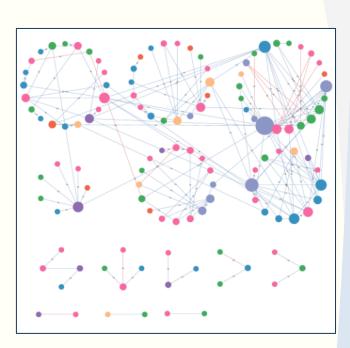

Node size setting result

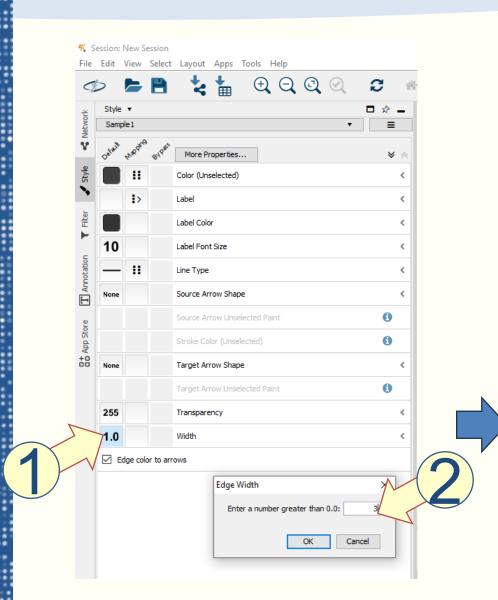


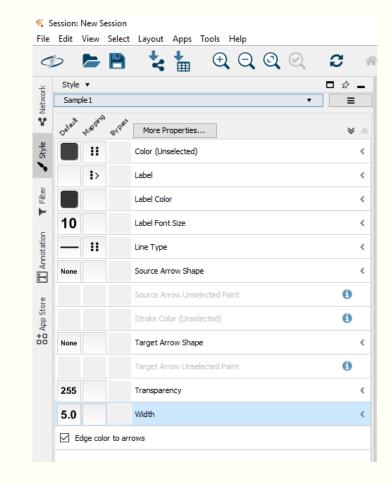
Use Cytoscape: Remove node labels

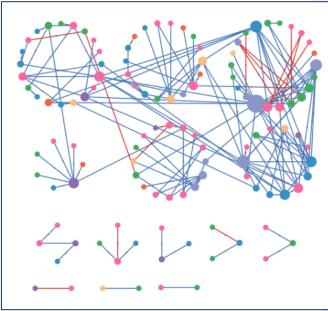
Usually, the node labels are not necessary.



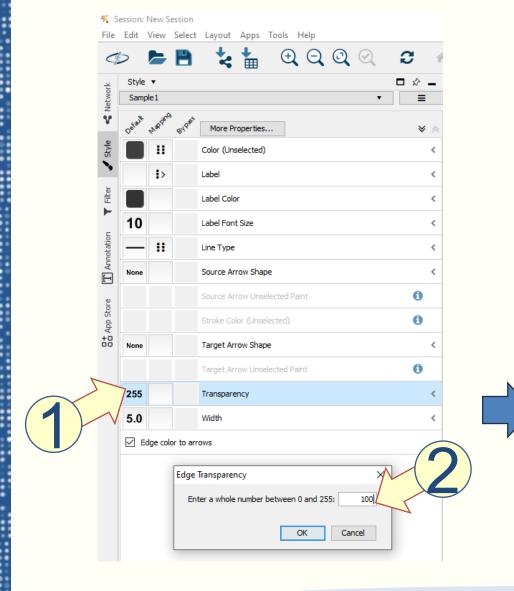


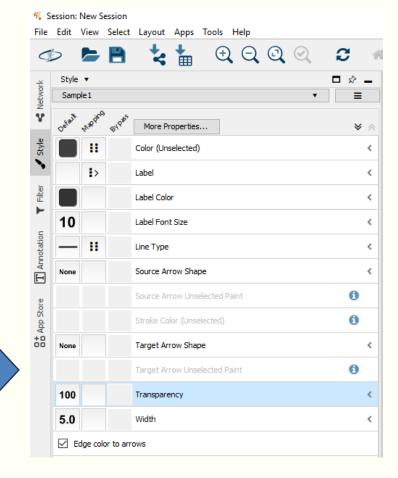

Use Cytoscape: Edge color

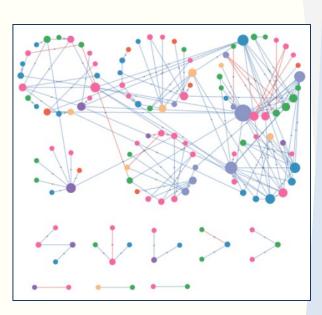

- You may explore edge color by other attributes.
- Here the example shows edge color by positive vs negative correlation.



Use Cytoscape: Edge size

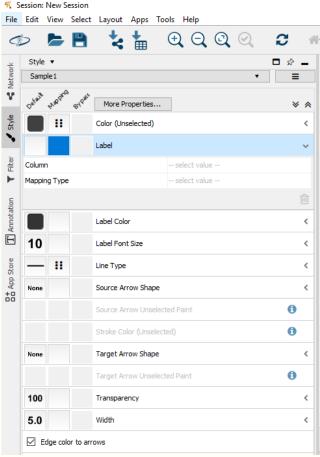


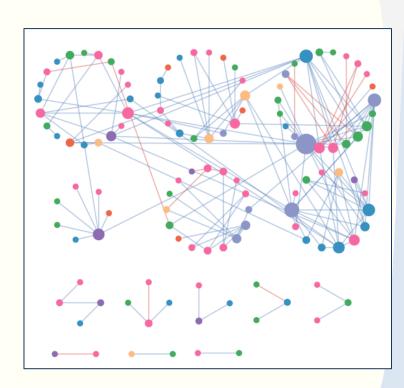




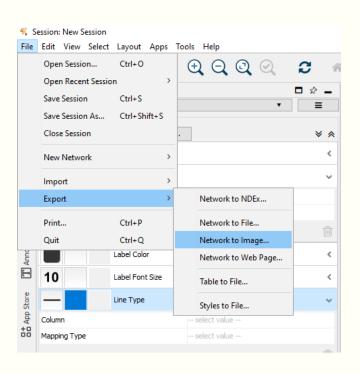
Use Cytoscape: Edge transparency

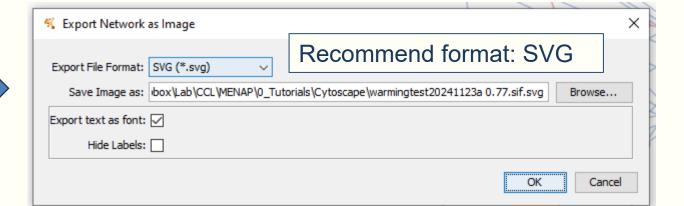
If you want to make the edge color lighter, you can decrease the value for transparency

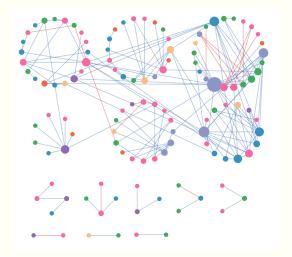


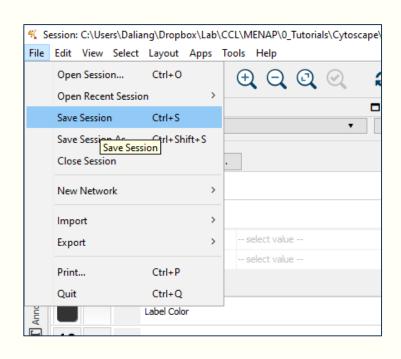


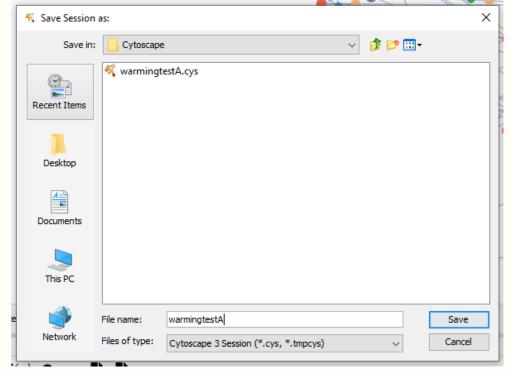
Use Cytoscape: Remove edge label


Usually, the edge labels are not necessary.






Use Cytoscape: Export image



Use Cytoscape: Save session

Fit three power-law models

Network statistics

Fit three power-law models (regular power law, exponential law and truncated power law)

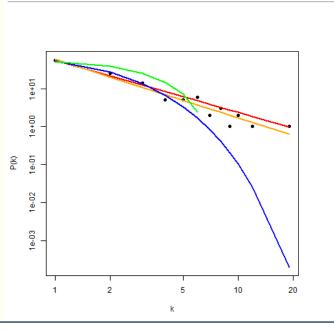
Randomize the network structure and then calculate network properties (Updated: Modularity values from random networks have been added.)

Calculate Gene/OTU significances (GS) with environmental traits and then use Mantel test to check the correlations between GS and network connectivity

Module-EigenGene analyses

Main -> Analysis

Select Network to do power_law_fitting


lease select a Molecular Ecological Network (MEN)

	1							
		User	Experiment name	Construction time	RMT threshold	# nodes	# links	
		Daliang	warmingtest20241123a	2024-11-23 11:29:18	0.7700	120	163	
0		Daliang	M120d20240723a	2024-07-23 18:26:40	0.9000	136	110	
		_		2022 02 02 44 07 44	0.7700	400	4.60	

3

Main -> Analysis

Power Law models fitting

Power-law: lamda = 1.370054, R2 of power fitting= 0.9867646 Log Power-law: lamda = 1.537721, R2 of log(y)-log(x): 0.9241948 Exponential distribution: lamda = 0.6959439, R2 = 0.9841367 Truncated Power-law: lamda = 0.6807769, kx = 1.616316, R2 = 0.7798388

You can download the values

Copy paste this part for your record.

Right-click 'download' and 'Save link as ...' to download the table.

Randomize the network

Network statistics

Fit three power-law models (regular power law, exponential law and truncated power law)

Randomize the network structure and then calculate network properties (Updated: Modularity values from random networks have been added.)

Calculate Gene/OTU significances (GS) with environmental traits and then use Mantel test to check the correlations between GS and network connectivity

Main -> Analysis

Select Network to do Randomization

ease select a Molecular Ecological Network (MEN)

- T							
		User	Experiment name	Construction time	RMT threshold	# nodes	# links
0		Daliang	warmingtest20241123a	2024-11-23 11:29:18	0.7700	120	163
C		Daliang	M120d20240723a	2024-07-23 18:26:40	0.9000	136	110

Main -> Analysis

Randomly rewire the network connections and calculate the network properties

This is your first time to run the randomization process. It will take a while. Please come back or refresh this page to check the status. After it finishes, the results will be shown in this page.

Wait until you can refresh the page

Main -> Analysis

Randomly rewire the network connections and calculate the network properties

Network Indexes	Empirical Network Indexes	100 Random Networks Indexes
Average clustering coefficient (avgCC)	0.001	0.027 +/- 0.011
Average path distance (GD)	4.558	3.960 +/- 0.128
Geodesic efficiency (E)	0.278	0.296 +/- 0.007
Harmonic geodesic distance (HD)	3.602	3.375 +/- 0.079
Centralization of degree (CD)	0.139	0.139 +/- 0.000
Centralization of betweenness (CB)	0.193	0.264 +/- 0.037
Centralization of stress centrality (CS)	1.434	0.632 +/- 0.120
Centralization of eigenvector centrality (CE)	0.369	0.398 +/- 0.032
Density (D)	0.023	0.023 +/- 0.000
Reciprocity	1	1.000 +/- 0.000
Transitivity (Trans)	0.004	0.038 +/- 0.012
Connectedness (Con)	0.655	0.827 +/- 0.059
Efficiency	0.977	0.982 +/- 0.001
Hierarchy	0	0.000 +/- 0.000
Lubness	1	1.000 +/- 0.000
Modularity(fast_greedy)	0.616	0.597 +/- 0.011

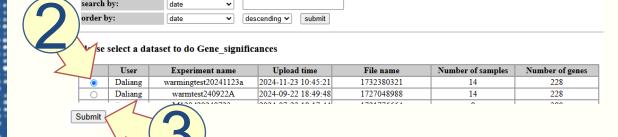
Copy paste the table to a spreadsheet

Relationship with environmental traits (1)

Network statistics

Fit three power-law models (regular power law, exponential law and truncated power law)

Randomize the network structure and then calculate network properties (Updated: Modularity values from random networks have been added.)


Calculate Gene/OTU significances (GS) with environmental traits and then use Mantel test to check the correlations between GS and network connectivity

Module-EigenGene analyses

Main -> Analysis

Select MV_dataset to do Gene_significances

Gene/OTU significances settings

Summary of your data:

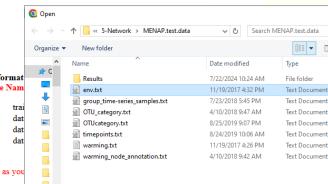
Experiment name	warmingtest20241123a
# Gene/OTU	228
# Samples	14
Nottings	Missing values were filled with 0.0100 by fill_paired; don't take logarithm; and then calculate Pearson Correlation.

Your environmental traits:

Please upload your file of environmental factors here

<u>...</u>

Your experimental traits file:


Choose File No file chosen

Submit

The uploaded file must be tab-devided text file and its format The first cell (in the upper-left corner) must be "Sample Name

Sample Name trait Name1 trait Name2 trait Sample1 data11 data12 dat Sample2 data21 data22 dat Sample3 data31 data32 dat ...

Notice: please name your environtmental factors as simple as you

Prepare environmental factor table according to the format requirements, then upload.

Back to Outline

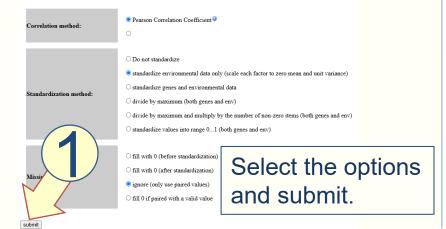
All Files (*.*)

Relationship with environmental traits (2)

Main -> Analysis

Gene/OTU significances settings

Summary of your data:


Experiment name	warmingtest20241123a
# Gene/OTU	228
# Samples	14
Settings	Missing values were filled with 0.0100 by fill_paired; don't take logarithm; and then calculate Pearson Correlation.

Your environmental traits:

sample	pН	Moisture	TC
Warming1	3	12	30
Warming2	5	15	31
Warming3	3.2	21	32
Warming4	5.5	16	34
Warming5	6	10	34
Warming6	7	19	39
Warming7	8	18	36
Warming8	6.5	14	16
Warming9	7.1	22	12
Warming10	9	20	14
Warming11	5.4	16	19
Warming12	4.6	12	17
Warming13	3.9	11	13
Warming14	8	10	18

Remove file

Or re-upload your file of environmental traits here

Main -> Analysis

Gene Significances

Notice: please wait a while and then results will appear below.

	pН	Moisture	TC
OTU1	0.211	0.082	0.091
OTU1006	0.021	0.038	0.047
OTU1012	0.002	0.005	0.296

OTU96	0.014	0.211	0.013
OTU983	0.044	0.168	0.216

You can download this table here, and then open it in Excel.

Right-click 'here' and 'Save link as ...' to download the table.

Main -> Analysis

Settings of GS vs. node connectivity

Summary of your data:

Experiment name	warmingtest20241123	
# Gene/OTU	228	
# Samples	14	
Gene Significance	pH,Moisture,TC	

Your node annotation file:

Distance method:

Please upload your file with node annotations here.

Euclidean distance

Bray-Cutis distance

Morisita distance

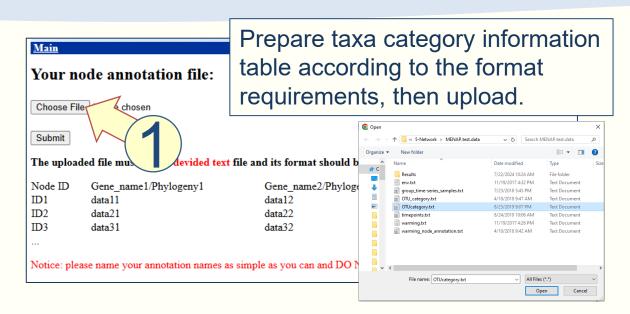
Jaccard distance

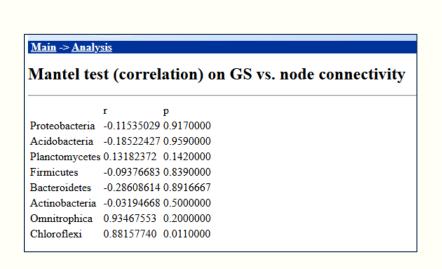
GS included in Mantel test:

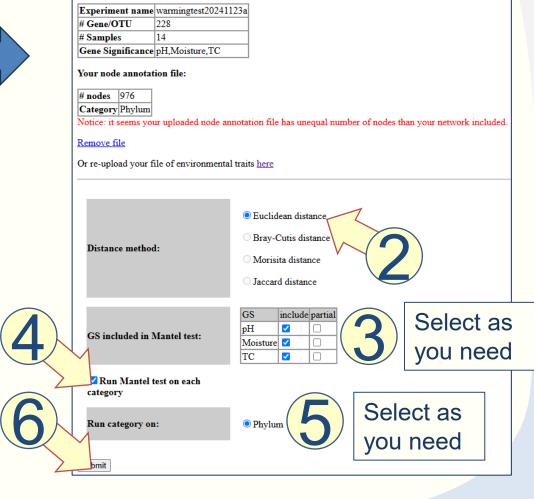
0.0	merace	Purtiur
pН	✓	
Moisture	✓	
TC	~	

include partial

☐ Run Mantel test on each category


submit


Relationship with environmental traits (3)


Main -> Analysis

Summary of your data:

Settings of GS vs. node connectivity

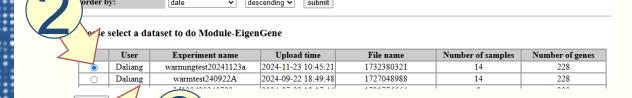
Module-EigenGene analyses (1)

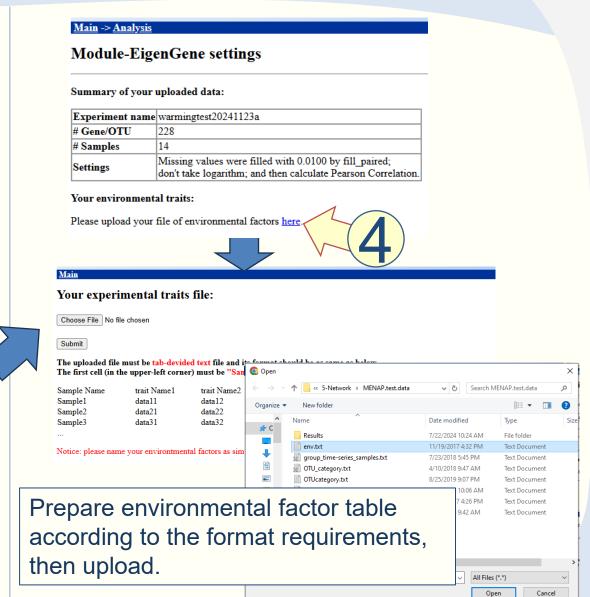
Network statistics

Fit three power-law models (regular power law, exponential law and truncated power law)

Randomize the network structure and then calculate network properties (Updated: Modularity values from random networks have been added.)

Calculate Gene/OTU significances (GS) with environmental traits and then use Mantel test to check the correlations between GS and network connectivity


Module-EigenGene analyses



Main -> Analysis

search by:

Select MV_dataset to do Module-EigenGene

Module-EigenGene analyses (2)

Main -> Analysis

Module-EigenGene settings

Summary of your uploaded data:

Experiment name	warmingtest20241123a
# Gene/OTU	228
# Samples	14
Nottinge	Missing values were filled with 0.0100 by fill_paired; don't take logarithm; and then calculate Pearson Correlation.

Your environmental traits:

sample	pН	Moisture	TC
Warming1	3	12	30
Warming2	5	15	31
Warming3	3.2	21	32
Warming4	5.5	16	34
Warming5	6	10	34
Warming6	7	19	39
Warming7	8	18	36
Warming8	6.5	14	16
Warming9	7.1	22	12
Warming10	9	20	14
Warming11	5.4	16	19
Warming12	4.6	12	17
Warming13	3.9	11	13
Warming14	8	10	18

Remove file

Or re-upload your file of environmental traits here

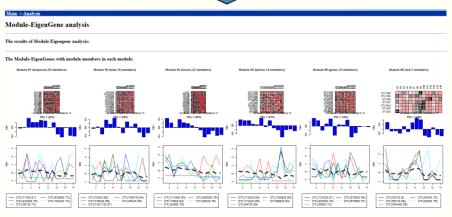
You already ran module-separation methods on

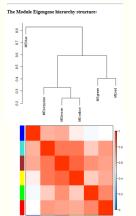
Please choose one:

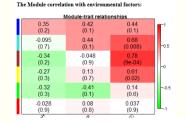
🖢 greedy modularity optimization

Ignore the small modules with less than 5 member

submit


Main -> Analysis


Module-EigenGene analysis


Your first-time to run Module-eigengene analysis on this network. Record this webpage and come back to view results later or refresh this page to check the status...

Wait until you can refresh the page

The Module Membership table can be download here

The Module Separation table can be download here

The Module-Trait Relationship table can be download here

The Module EigenGene table can be download here

Back to Outline

End